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The nonequilibrium response of a colloidal liquid-crystalline nematic phase to an external aligning field,
which rotates in a plane, is explored by dynamical fundamental measure density-functional theory. Depending
on the drive frequency, different dynamical states are found, which are characterized by towing and overtaking
of the nematic director by the field as well as by breathing and dynamical splitting of the orientational
distribution peak. This complex response can be exploited for smart optical switching and mixing devices.
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The key mechanisms in optical displays and switching
devices are governed by the dynamical response of liquid
crystals to external aligning fields [1,2]. In particular, it is
essential to understand and control the switching dynamics
of the nematic director upon a change in the externally im-
posed alignment field [3]. Liquid crystals can be composed
either by anisotropic molecular or colloidal particles with
orientational degrees of freedom. The latter have the advan-
tage that they can be studied directly in real space [4—6]. Due
to their orientational degrees of freedom, the rheological be-
havior and nonequilibrium dynamics of rodlike particles are
much more complex than that of spherical particles [7]. For
instance, for imposed shear flow, the nematic director exhib-
its an intricate dynamical behavior, which can be classified
as tumbling, wagging, kayaking, log rolling, and flow align-
ing [8-14].

Motivated by the importance of changing alignment
fields, we investigate the dynamics of a colloidal nematic
phase in the presence of an orientating field, which rotates in
a plane with a frequency w,. We find a wealth of different
dynamical states as a function of system density and external
drive frequency. For very small frequencies, the field tows
the nematic director such that the latter is rotating with the
same external frequency w, in the same plane. During this
towing process the orientational distribution function keeps a
time-independent internal shape. Above a threshold fre-
quency, the width of the orientational distribution exhibits an
internal oscillation with another frequency w,, an effect that
we call orientational breathing—in analogy to particles in
oscillating traps [15,16]. Further, above a higher threshold
frequency, the peak of the orientational distribution splits
into two peaks what we refer to as splitting. For an even
higher external rotation frequency w,, the driven nematics
cannot follow the drive any longer and is decelerated; rotat-
ing with another angular velocity w), it is overtaken by the
external field. Finally, for even higher w,, the monopeak is
re-entrant before the orientational distribution becomes static
in the limit wy— .

Our studies are based on the microscopic dynamical
density-functional theory for Brownian rodlike particles [17]
with a recently developed fundamental measure equilibrium
density functional [18], which accounts for nontrivial corre-
lations in the inhomogeneous system. This functional is em-
ployed for hard spherocylinders in an external time-
dependent driving field and has been tested carefully in
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previous work [19]. Thereby a microscopic approach for
nonequilibrium dynamics in dense liquid crystals has been
established.

The dynamical states of towing, breathing, splitting, and
overtaking, which are predicted by our dynamical density-
functional theory, can be confirmed in various systems using
different experimental setups. Apart from molecular liquid
crystals in rotating aligning fields [20-23], rodlike colloidal
particles form nematic phases and can be exposed to rotating
electric [24] or magnetic [6,25] aligning fields. A similar
effect occurs in ferrofluids in rotating magnetic fields [26] or
in complex plasmas of rodlike particles in rotating electric
fields [27]. As an equivalent setup, one can rotate the sample
and keep the aligning field static, which was proposed re-
cently in Ref. [26]. The different dynamical states in the
switching response of the colloidal liquid crystal can be ex-
ploited to fabricate smart devices, which generate polariza-
tion amplification and mixing.

In our model, we employ hard spherocylinders for lyotro-
pic colloidal liquid crystals in the absence of system bound-
aries. The spherocylinders have a fixed aspect ratio L/ =5,
where L is the length of the cylindrical part and o is the
diameter. The averaged number density of the spherocylin-
ders p is typically chosen in the region where the bulk phases
are isotropic or nematic [28]. In the following we express p
in a reduced form via p*=p/p., with the close packing den-
sity pcpf:ﬁ. The spherocylinders perform completely
overdamped Brownian motion in a solvent, which keeps
them at finite temperature 7. A time-dependent external driv-
ing field is then applied, which brings the suspension into
nonequilibrium. The nonequilibrium dynamics are character-
ized in terms of a time-dependent one-particle density field
p(i,0)=pf(i,1),> which is homogeneous in the translational
but heterogeneous in the orientational variable given by an
orientational vector # on the unit sphere S,. We remark that
although the density field is translational homogeneous the
density functional still contains nontrivial positional correla-
tions. In polar coordinates, this unit vector can be expressed
by the polar and azimuthal angles, i(p,)

1Larger aspect ratios do not change the qualitative dynamical sce-
nario of the dynamical state diagram.

*The one-body density is a statistical average over different direc-
tors in domains.
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TABLE I. Characterization of the different dynamical states via
the breathing frequency w, the splitting parameter A, and the av-
eraged angular velocity w), of the peak.

w, N w,
Towing =0 =1 =w
Breathing >0 =1 =w
Splitting >0 =2 =w
Overtaking >0 =2 <wy
Unsplit and overtaking >0 =1 <wy

=(cos ¢ sin I3,sin ¢ sin ¥,cos ¥). The dimensionless and
normalized quantity f(ii,r) measures the distribution of ori-
entations of the spherocylinders at a given time ¢ on the unit
sphere. Clearly, as we are dealing with apolar particles,
S, 0)=f(i,1).

As for a microscopic theory for nonequilibrium dynamics,
we apply dynamical density-functional theory, which pro-
vides a deterministic equation for f(ii,7) in a time-dependent
external potential. For orientational degrees of freedom, the
evolution equation of dynamical density-functional theory in
the absence of hydrodynamic interactions is [29]

ofan) | Aéf[f]}
kgTp P _DrR{f(M’t)Rﬁf(ﬁ,z) .

t
Here, D, is the rotational short-time diffusion constant,
which sets the Brownian time scale 73=1/D, and includes

(1)

rotational friction, kzT is the thermal energy, and R=iix Vi;
is the rotational operator. Note that hydrodynamic interac-
tions can be neglected if the physical volume fraction is
smaller than the effective volume fraction of the interactions,
as realized, e.g., for charged rods. Backflow effects [30] are
also not considered. However, it is clear that hydrodynamic
interactions between the spherocylinders are important for
large physical volume fractions and would lead to more com-
plex dynamical response. Finally all microscopic information
is contained in the equilibrium free-energy density functional
FIf(i)]. The latter is conveniently decomposed into three
terms m]=‘f.id ]+fext[f]+fexc[f]’ where ﬁdl—JC]
=kBTfSZd2ﬁf(ﬁ)[ln(f(ﬁ))— 1] is the entropy of ideal rotators,
Fodllf1=1 Szdzﬁf(ﬁ)Vex,(ﬁ,t) describes the coupling to an ex-
ternal time-dependent potential V,,(i,f), and F,.[f] in-
volves the particle correlations. For the latter we use the
recently proposed fundamental measure theory by Hansen-
Goos and Mecke [18].}
The external aligning potential is chosen as

Vext(ﬁat) == VO COSz(wot - @)Sinz(ﬂ) (2)

and describes a rotation of an optimal alignment direction
iig(f)= £ (cos wyt,sin wyt,0) in the equatorial plane of the
unit sphere with an external frequency w, and an amplitude
Voy=5kgT. The * sign reflects the symmetry of apolar par-
ticles. This is schematically shown in Fig. 1.

The technical & parameter is fixed to 1.6.
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FIG. 1. (Color online) Schematic view of an orientational profile
f(@,) in the equatorial plane. The surface of the shaded area is
given by f(¢,®)i with i, i.e., it is a polar plot of f(#); f,, is the peak
value in the direction i, of the maximum of f. The amplitude of the
driving field is maximal along the unit vector i,. The external fre-

quency o, and the peak angular velocity w,, are also indicated.

We have solved the Eq. (1) numerically for f(ii,) by us-
ing a finite difference scheme with a time step of Ar=5
X 107> 75. Various combinations of reduced densities p* and
external frequencies w, were explored by starting with a ho-
mogeneous orientational distribution. After typically 500
cycles, the system reaches a dynamical state, which we char-
acterize by several order parameters. In fact, five qualitative
different dynamical orientational distributions are found for
increasing frequency. Let us first describe them step-by-step
before providing the full nonequilibrium state diagram in the
p*— w, parameter space.

For vanishing w,, the external potential is static and leads,
at any density p*, to a nematic state with a director along the
x axis. For wy— o, on the other hand, the system effectively
feels a static time-averaged external potential —V,, sin*(3)/2.
Here the system undergoes a paranematic-nematic transition
at about p*=0.3717 [17]. Apart from these two bracketing
equilibrium limits, the system shows a complex nonequilib-
rium response at finite frequencies wy. For small wy, the
external field drags the orientational field f(ii,) slowly such
that its peak position ii,(r) follows the optimal orientation
iio(r) with the same angular velocity w, and keeps a constant
internal shape. We call this dynamical state as towing. The
characteristic dynamics in the towing state is summarized in
Fig. 2(a). In the left plot, the unit sphere is mapped onto a
rectangular stripe showing the height of f(ii,z) for a fixed
time. The latter is indicated by an arrow on the time axis of
the right plot. The white cross in the left plot indicates the
position of #y(f) at this time and reveals the towing
behavior.* Full time-dependent movies for f(ii,r) are also
available [31]. During the towing process, the peak ampli-
tude f,(1)=max, s f(¢,¥,1) is constant and its polar angle
®,(1) is lagging behind the polar angle ¢ (t) of ii(t) as given
by the solid and dotted lines in the right plot of Fig. 2(a).
Obviously, the polar angles are only unique up to a multiple
of r, therefore multiple lines are shown in the left plot of
Fig. 2(a).

Above a threshold frequency, the peak amplitude f,(z)

*The towing behavior is qualitatively similar to the propagating
soliton state found in a confined liquid crystal in [C. Zheng and R.
B. Meyer, Phys. Rev. E 56, 5553 (1997)].
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FIG. 2. (Color online) Left fig-

ures: orientational  distribution
function f(¢,9,t) for fixed time
given by the arrow on the time
axis in the right figure. The cross

shows the position of #(¢). Right
figures: polar angles of the peak
maximum (solid line) and of #y(z)
(dotted line) and the peak ampli-
tude f, (dashed line) versus re-
duced time ¢/ T, along one cycle of

0 ¢

d)

the driving potential. The param-
eters are p*=0.5 and (a)
wy7p/27=0.8, (b) 0.9, (c) 1.02,
(d) 1.07, (e) 1.16.
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starts to oscillate with another internal breathing frequency
w,, different from w, see the dashed line in the right plot of
Fig. 2(b). The position of the maximum ¢,(t) follows the
drive position ¢,(f) with the same speed on average but has
an internal breathing oscillation on top of that, see the solid
line in the right plot of Fig. 2(b). The intuitive explanation of
the breathing process is that the peak is dragged and pushed

0/\ /
ot 1

0

periodically by the two bracketing minima of the rotating
potential.

If w, is increased further, the peak of f(¢,¥,¢) splits into
two peaks in solid angle (¢,) space. For this splitting a
convenient order parameter is the maximal peak number A
=max, N, [f(¢,0,1)], where N, [f(¢,D,1)] counts any
maxima on a hemisphere (such that N,,,=1 describes a
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FIG. 3. (Color online) Nonequilibrium state diagram in the
plane of driving frequency w, and reduced density p*. The double
headed arrow at p*=0.5 is marking the range of (w,,p*) for that
snapshots were taken in Fig. 2. The arrow at the right side gives the
position (p*=0.3717) of the static paranematic-nematic transition
in the limit wy— .

monopeak and N,,=2 a split peak). A splitting state is
shown in Fig. 2(c). The function N,,[f(¢,J,1)] is periodic
in time with the internal breathing frequency w,. Since the
angle ¢,(t) corresponds to the peak of f(¢,,1) with maxi-
mal amplitude, it jumps during the splitting process [see
right plot of Fig. 2(c)], which is associated with a cusp in
f,(t). At higher w, this jump exceeds /2. We compose a
unique function ¢,(#) by coupling branches of ¢, (¢) together
such that their jump is always smaller than /2. Using this
function, we define a mean angular velocity of the peak
maximum by wp=%hfgb¢p(t)dt, where T,=2m/w, is the
breathing period. Therefore, when the jump exceeded /2,
the averaged angular velocity of the peak becomes w, < w.
We call this state as overtaking since the external field is
faster than the orientational peak. A characteristic situation is
plotted in Fig. 2(d). Finally, for even higher w,, there is a
monopeak again, a situation referred to as “unsplit and over-
taking.” Here, there is no ambiguity in ¢,(r) and again w,
< wy. In this dynamical state there is a simple relation be-
tween wy, wy, and @, which comes from the fact that during
one cycle of breathing [cf. Fig. 2(e)] the peak position moves
from one minimum of the potential backward to the next
one. This means a backward angular velocity of /T,
=w,/2. Hence, the difference between the angular velocity
of the driving potential and the backward velocity of w,/2 is
then equal to the angular velocity w, of the peak, resulting in

1
W= W, + 0. (3)

Relation (3) holds also in the towing state as a special case
where w,=0.

The different dynamical states are summarized in Table I
together with their characterizing order parameters wj, N,
and w),.

A nonequilibrium state diagram is shown in Fig. 3 as a
function of external frequency w, and reduced density p*.
There is a small density-dependent frequency band in which
the cascade of different dynamical states occurs. In fact the
splitting phase we only found stable above a critical value of
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FIG. 4. (Color online) Behavior of (a) the breathing frequency
wp, (b) the splitting parameter N, and (c) the averaged angular
velocity ), of the peak shown against the external driving fre-
quency . The transitions are marked by the vertical slashed lines
and the arrows are pointing at those frequencies wy shown in Fig. 2.
The density is p*=0.5 (double headed line in Fig. 3).

p*=0.38. For large wy, the transitions tends to the equilib-
rium paranematic-nematic transition as shown by the arrow
in Fig. 3. In Fig. 4 the three order parameters are shown for
a fixed density p*=0.5 (along the double headed line in Fig.
3). While the breathing frequency wj, jumps discontinuously
from the towing to the breathing state it behaves continu-
ously across the following transitions. Conversely the angu-
lar velocity w, of the peak jumps twice discontinuously
across the splitting— overtaking and the overtaking
— unsplit transition.

In conclusion, an in-plane aligning field that rotates with
an external frequency wy gives rise to a complex dynamical
orientational response of a colloidal liquid crystal with five
different states characterized by towing, breathing, splitting,
overtaking, and unsplit overtaking, as w, increases. We fi-
nally mention two applications of the dynamical response:
first, in microfluidic devices filled with a nematic liquid crys-
tal [32] localized rotating driving fields can be used as mi-
cromixers whose mixing efficiency can be conveniently
steered by the external driving frequency, in particular in the
regime of the unsplit and overtaking state. Second, if an
electromagnetic wave is passing through a rotating nematic
liquid crystal [33], its polarization can be amplified and non-
linearly changed by tuning the external drive frequency. The
internal breathing state will mix another frequency to the
wave coming out and the splitting state will induce further
nonlinearities. Therefore the dynamical states can in prin-
ciple be exploited for the construction of smart switching and
mixing devices. Moreover we mention that dynamical states
are expected for spherical colloids in traveling colloidal
wave fields [34] where the equations of motion are formally
similar [35]. It also would be interesting to resolve the spatial
dependence of the density field. This is particularly impor-
tant if system boundaries are included. Finally a comparison
to Brownian dynamics computer simulations of hard sphero-
cylinders [36,37] would provide a test for the dynamical
theory proposed in this paper.
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